

Vol. 5, Issue 3&4 July-September 2022 October-December 2022

ISSN: 2581-8090

Chelan

AN EIACP NEWSLETTER

WETLAND ECOSYSTEM

July-December 2022

© Asian Development Research Institute, EIACP Resource Partner

EIACP Team

Dr. Prabhat P Ghosh, EIACP Coordinator Dr. Dipesh Kumar, Programme Officer Ms. Pooja Kumari, Information Officer Ms. Sarada Modak, Information Technology Officer Mr. Sanjeev Kumar, Data Entry Operator

Editorial Team

Dr. Prabhat P Ghosh, ADRI Dr. Aviram Sharma, University of Vigo, Spain. Dr. Krishna Kumari, Dr. Rajendra Prasad Central Agricultural University Mr. Vivek Tejaswi, ADRI Dr. Mukesh Prasad, ADRI Dr. Dipesh Kumar, ADRI Ms. Pooja Kumari, ADRI

Design & Compilation

Ms. Pooja Kumari and Mr. Sanjeev Kumar

Published By

Environmental Information, Awareness, Capacity Building, and Livelihood Programme Centre (EIACP-PC-RP), Centre for Studies on Environment at Climate (CSEC) at the Asian Development Research Institute (ADRI) BSID Colony, Off Boring Patliputra Road, Patna 800 013 E-mail: <u>csec@adiindia.org</u>

Sponsored By

Environment Information, Awareness, Capacity Building, and Livelihood Programme (EIACP), Under the aegis of the Ministry of Environment, Forest and Climate Change, Government of India, New Delhi

Disclaimer

The text and illustrations used in this newsletter do not necessarily represent the views of EIACP-RP, CSEC at ADRI, and the authors are responsible for the accuracy of the content and the mentioned sources. EIACP-RP, CSEC at ADRI cannot be held responsible for any possible violations of third-party rights. Discrepancies (if any) may kindly be brought to the notice of the EIACP Centre at CSEC-ADRI, Patna.

Table of Contents

Declining Mangrove Cover of Vembanad-Kol Wetland Ecosystem Megha S Vinod, Mogalekar H.S., S.K. Nayak and P.P. Srivastava	1-4
Anthropogenic Impact on Indian Wetlands: A Threat to the most	Productive
Living Ecosystem on the Earth Akriti Ashesh and Ningombam Linthoingambi Devi	5-9
Case Study Md Shahbaz, Ahbar Alam, and Shahla Yasmin	10-13
In Spotlight	14-21
Knowledge Outcomes	22-27
Knowledge Dissemination	28-31
Important Reading on Wetlands	32
Appendix I	33
Appendix II	34-36

Declining Mangrove Cover of Vembanad-Kol Wetland Ecosystem

Megha S Vinod, Mogalekar H.S., S.K. Nayak & P.P. Srivastava

Introduction

Vembanad-Kol Wetland (**Fig. 1**) is the largest brackish, humid tropical wetland ecosystem on the southwest coast of India, fed by 10 rivers, renowned for its clams and waterfowl population. It has been designated as a Wetland of International Importance (Ramsar Site) in 2002. It offers flood protection for thickly-populated coastal areas of three districts of Kerala and supplies water for agriculture, besides other ecosystem services. The soft, organically rich sedimentary substrata of the in-shore region are an ideal habitat for shrimps. The estuarine zone plays a key role in the life cycle of many shrimps caught, and the entire Vembanad Kol acts as a nursery for important shrimp-like *Penaeus indicus, P.monodon, Metapenaeus dobsoni, M. monoceros, M. affinis, Macrobrachium rosenbergii* etc. In a time when the world is in search of a suitable protein source to be incorporated into their daily ration with population explosion on the flip side, the Indian economy capable of providing the most preferred healthy delicacy losing its resources to self-made disasters is sad, especially when it comes to commercially important species like shrimp. Therefore reestablishment of such crucial ecosystems stands vital and very important.

Due to mismanagement, we have lost an ample area of Vembanad-Kol wetland, and the area has shrunken from 365 square kilometres in 1834 to around 179.25 square kilometres in 2010, reflecting the need for emergency revival of the ecosystem (Asha et al., 2014; Ganesh et al., 2020).

Fig. 1: Vembanad-Kol Wetland (Source: Shutterstock)

Emerging threats and their impacts

Swaminathan Commission report mentions that nearly 23 species of fish had gone extinct (Krishnakumar & Priyadarsanan, 2012; Krishnakumar et al., 2008) when the water body shrunk and that the reason for this has been stated as habitat alteration for agricultural activities, overexploitation of resources through unmanaged fisheries and unsustainable fishing practices using destructive fishing practices and nets, pollution and exotic species introduction (Padmakumar et al. 2001, Krishnakumar et al. 2008, Krishnakumar et al. 2011; Krishnakumar & Priyadarsanan, 2012). Catfishes, Cyprinids, and Crustaceans comprise the maximum of the wetland's rich resources. Seabass and Mullets have declined dramatically since the construction of Thaneermukom Barrage. Analysis of fish stock decline suggests that 86% of these are migratory species and that the Thaneermukom barrage prevents their entry into the lake (Krishnakumar et al., 2008). Thottapally spillway also contributes to changing the physic-chemical conditions of the lake affecting the dwelling and propagation of migratory species, which resulted in their decline and even extinction.

Lack of proper consideration and unscientific and inhumane acts from both government and communities has led to an apparent deterioration of the wetland. As per reports (Source: Report prepared by Wetlands International – South Asia for International Union for Conservation of Nature and Ministry of Environment and Forests, Government of India under Mangroves for the Future – India initiative), till the 19th century, the anthropogenic threats were minimal. The establishment of Cochin Port in 1838 catalyzed the beginning of economic activities in this region. In addition, the large-scale reclamation of fertile floodplains, conversion of wetland regions and marshes into polders for agriculture, construction of spillways for preventing seawater intrusion and tidal control like the building of Thaneermukom Barrage, the establishment of Udyogmandal Industrial belt, clearance of thick mangrove forest for accommodating backwater tourism facilities, for instance, the Baker estate in Kumarakom which is the longest mangrove cover in Kerala was felled for Kerala Tourism Development Center Complex, have all led to massive destruction and degradation (Narayanan & Chourey, 2020).

The impacts of all such activities are seen evidently with the changed hydrological regime, like the reduction in water holding capacity by a factor of 77% (Narayanan & Chourey, 2020; Remani et al., 2010). Further, change in flushing patterns, pollution, the spread of invasive water hyacinth due to excessive mineral enrichment of water as a result of sewage and industrial effluent inflow, and changes in natural salinity gradient led to the decline of

brackish water, and marine fish and shellfish catch and subsequent reduction in rice production are other severe after effects.

Remedial Measures

Despite such sufferings, a suitable management intervention has not yet been put forward by the Government. Most of the development works carried out either in the wetland or upstream have been isolated activities and, therefore, are unsustainable. An integrated management plan is essential for better conservation and management of the system. An immediate step in conservation is the need of the hour. Even though many governmental policies and laws like National Environment Policy (2006), The Wetland Conservation and Management Rules (2010) state to protect the wetlands, but essential steps are not taken. Henceforth, through this article, certain remedial measures are suggested. These steps are aimed at a participatory approach where the local stakeholders are made an important component in the conservation strategy. The people who know the resource also will know ways to protect them. Hence their role is highly acclaimable. Also, rather than only focusing on the prevention of atrocities, it is time to give importance to reviewing and monitoring, ensuring every moment that the action plan is working. Revitalizing and rejuvenating the damaged ecosystem, proper management interventions, proper resource allocation, and imposing strict rules and regulations in case of any violation can surely bring forth changes but can only bring fruitful results if a regular check of compliance is done. Integration of traditional know-how into scientific principles can do wonders. Modern cultivation techniques like cage culture and pen culture can be adopted while also incorporating sanctuaries for the protection of endangered species. Thaneermukom barrage, which is stated as a serious threat, has to be kept open for a major part of the year for necessary saline water intrusion. Increasing awareness among farmers, afforestation, soil and water conservation, closure of worst-hit areas for natural ecosystem restoration (Remani et al., 2010), and ranching of endangered species are other useful measures.

Author Brief

Miss. Megha S Vinod is currently pursuing her Master's (MFSc.) in Fish Nutrition and Feed Technology from the Central Institute of Fisheries Education (CIFE), Mumbai. She has completed her Bachelor's (BFSc.) from Dr Rajendra Prasad Central Agricultural University, Pusa, Bihar and has published nine articles for different magazines and journals.

Dr. Mogalekar H.S. is working as an Assistant Professor at the College of Fisheries (RPCAU, Pusa, Samastipur), Muzaffarpur, Bihar, India. He has published 41 research and review articles in journals, has published five books, and 16 articles. She is actively engaged in teaching courses related to aquatic environment management.

Dr. S.K. Nayak is working as an Assistant Professor at the College of Fisheries (RPCAU, Pusa, Samastipur), Muzaffarpur, Bihar, India. He has published 16 research and review papers in journals, 11 articles and is actively engaged in teaching courses related to aquatic animal health management.

Dr. P.P. Srivastava is working as the Dean at the College of Fisheries (RPCAU, Pusa, Samastipur), Muzaffarpur, Bihar, India. Dr. Srivastava has published 214 research papers in journals, many book chapters, and four books. Dr. Srivastava is actively engaged in teaching courses related to aquaculture, fish nutrition, and feed technology.

References

- 1. Ganesh, E. N., & Mahesh, L. N. (2020). *The species biodiversity at different stations of Vembanad backwaters, Alappuzha district, Kerala, India.*
- 2. Asha, C. V., Suson, P. S., Retina, C. I., & Nandan, S. B. (2014). *Decline in diversity* and production of exploited fishery resources in Vembanad wetland system: strategies for better management and conservation. Open Journal of Marine Science, 4(04), 344.
- 3. Krishnakumar, K., & Priyadarsanan, D. R. (2012). *Fish and fisheries in Vembanad lake: Consolidated report of Vembanad fish count* 2008-2011. Pub. CERC, Ashoka Trust for Research in Ecology and the Environment (ATREE), Mullakkal, Amman Kovil Street, Alleppey, Kerala.
- 4. Krishnakumar, K., Rajan, P. D., & Street, A. (2008). *Fish and fisheries in Vembanad Lake*. Consolidated report of Vembanad fish count, 2011.
- 5. Narayanan, N. C., & Chourey, J. (2020). Environmental governance: concept, complexity and an illustration. In Ecosystems and Integrated Water Resources Management in South Asia (pp. 302-337). Routledge India.
- 6. Remani, K. N., Jayakumar, P., & Jalaja, T. K. (2010). *Environmental problems and management aspects of Vembanad kol wetlands in South West coast of India*. Nature, Environment and Pollution Technology, 9(2), 247-254.
- https://www.shutterstock.com/search/vembanad?c3apidt=p15797996695&cr=ec&gcli d=CjwKCAjwzuqgBhAcEiwAdj5dRgrH6w0Djeyyis4tqQ9XD4jALaJsAPW6SLV1Q wjuXzOT1CDHbG10ZRoCBZoQAvD_BwE&gclsrc=aw.ds&kw=shutterstock&pl=P PC_GOO_IN_BD-257001475089

Anthropogenic Impact on Indian Wetlands: A Threat to the most Productive Living Ecosystem on Earth

Akriti Ashesh and Ningombam Linthoingambi Devi

Overview of Indian Wetlands

India has 1243 wetlands sites of ecological significance, amongst which 75 wetlands have been designated as 'Ramsar' sites, covering around 1.3 million hectares of the total geographical area under 'Wetlands of International Importance'.¹ India has the second-highest number of Ramsar sites after Spain, which has 76 such sites in the country. Wetlands provide habitats to a wide variety of resident as well as migratory bird species, which is one of the significant indicators under the Ramsar convention.

According to IUCN², wetlands provide a suitable environment for feeding and breeding and as a place to refuel and rest during migrations of several bird species, including rare, endangered, near threatened and threatened species. Moreover, it also supports communities residing around the wetlands by fulfilling water demand for agriculture, drinking and fishing culture as alternative livelihood opportunities (Bhatt et al., 2016). Wetlands perform a myriad of functions and are a source of numerous ecosystem services. Nutrient cycling, food supply, maintaining water table, recharge groundwater, natural flood buffer, acting as sediment and nutrient sink, recreation and tourism zone, and the list could go long. Even due to serious anthropogenic pressure on such diverse aqua-ecological systems, many wetlands are at risk of drying and degradation of their supporting biodiversity. Other factors like changes in seasonal variability, siltation, sedimentation, soil erosion, weed invasion, nutrient accumulation, willow plantations, pesticide pollution, bird poaching, overharvesting of fishes, littered garbage, unregulated tourism, etc. are also causing serious threats to the active wetlands ecosystem.

Wetland degradation can be characterized as a phenomenon triggering a drastic change in the natural functioning of its hydrology, geomorphology, and biodiversity. It is induced generally due to agricultural conversion, deforestation, feeding channel diversion or encroachment, defoliation, water quality degradation, spread of invasive species, etc. The encroachment of wet areas due to silt deposits forms acute loss, whereas the gradual elimination of biological diversity, soil erosion, and sedimentation of the wetlands over several decades causes chronic

¹ Wetlands India Portal, Government of India: https://indianwetlands.in/

² International Union for Conservation of Nature (IUCN): https://www.iucn.org/

loss. Wetlands are functional for all seasons. During rainfall, it acts as a natural flood buffer, securing water for irrigation and fish culture purposes even during dry seasons.

India has a large number of inland wetlands due to its diverse regimes in climatic conditions. It accounts for 43% and 30% of natural and manmade inland wetlands, respectively (Shan et al., 2021). The resources from inland wetlands provide livelihood and nutritional benefits for socio-economic development. Along with fish, some aquatic and moderately aquatic products such as lotus, foxnut, chestnut, and lily also provide alternative sources of livelihood. Despite being a major source of livelihood for a large fraction of the population, there is a dearth of data on the production and consumption of wetland products.

The increase in population and the resultant demands have put tremendous pressure on the wetland ecosystem and its services. Over time, the exploitation of natural resources has eventually led to a decline in fish diversity and production in the wetlands. For instance, wetlands such as Bharatpur bird sanctuary and Bhindawas Bird Sanctuary were forced to alter community structure due to alterations in hydrological conditions. Similarly, Bellandur lake (Bengaluru) is suffering from high industrial effluent, which has damaged the natural functioning of the wetland hydrology, Kakki reservoir (Kerala) was threatened by invasive species such as salvinia, and Tsomoriri Lake of Ladakh is disturbed due to alteration in climatic conditions (more examples in Table 1).

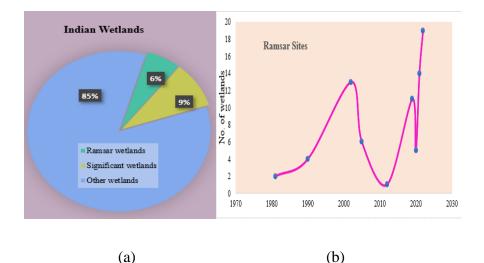


Figure 2. Wetlands in India (a) classification (b) increased trends in number. (source: <u>indianwetlands.in; https://ramsar.org/</u>)

Wetland	Location	Reported status	Reason for degradation	References
Bellandur lake	Bengaluru	Eutrophication prevails	Industrial effluents discharge	Shan et al., 2021
Bharatpur bird sanctuary	Rajasthan	Decline biodiversity (migratory birds)	Hydrological alteration	Haritash et al., 2015
Chatra Wetland	Kolkata	Reported: significant deterioration in quality since past 18 years	Land use land cover transformations due to urban agglomeration	Das & Basu 2020
Deepor Beel Wetland	Assam	Shrinkage of wetlands length, highly sedimented and overexploited	Weed infestations and siltation	Sarkar & Borah 2018
Hariya chaur	Jandaha, Vaishali, Bihar	Decline in fish production	Overexploitation	Pankaj & Hassan 2014
Kabar tal wetland	Begusarai, Bihar	Increase in agriculture and fallow land	Unplanned intensive agriculture activities, population pressure	Ranjan & Kumari 2018
Kakki Reservoir	Kerala	Loss of large number of native plant and animal species, invasion by salvinia	Weed infestation	Shan et al., 2021
Keolado National Park	Bharatpur, Rajasthan	Adversely affected and sensitive to drought	Climate change, water supply, pollution, urbanization, grazing	Chaterjee et al., 2015
Kolleru lake	Andhra Pradesh	Transformation of natural wetlands to agricultural land	Agricultural activities	Shan et al., 2021
Loktak Lake	Manipur	Decline in fish population, degradation of productivity, & biodiversity.	Human activities	Singh & Kundrakpam 2012
Motapung Beel Wetland	Assam	Decrease in fish stocks, fodder, thatch, and tourism	Overexploitation & siltation	Bhatta et al., 2016
Sakari Chaur	Vaishali, Bihar	Degraded water quality	Urbanization	Pankaj et al., 2015
Bramhapura Maun	Muzaffarpur, Bihar	Decline in ecosystem service	Urban agglomeration	Kumar et al., 2013
Tsomoriri Lake	Laddakh	Risen water level, migratory birds on the verge of extinction	Climate change	Shan et al., 2021
Varthur Lake	Bengaluru	Loss in economic value, degraded water quality	Sewage outfall	Ramchandra et al., 2011

The assessments of degraded wetlands due to urban pressures are limited because of the unavailability of documented data. The quantitative report on wetland commercialization is missing from state data. Community awareness in the field of wetland conservation would increase its sustainable use and subsequently decrease the pressure. Attention needs to be shifted towards the direct and indirect drivers of degradation in the wetlands ecosystem. An explicit interpretation of wetland loss due to various anthropogenic pressure would need a comprehensive understanding of wetland features and the affected area, threats, and plausible mitigation measures.

Authors Brief:

Akriti Ashesh is a DST-INSPIRE research fellow currently pursuing a Ph.D. in Environmental Science from the Central University of South Bihar. She has done postgraduation in Environmental Science. Her research areas include monitoring contamination levels, particularly of persistent organic pollutants in environmental matrices such as soil and vegetables. She is also working on remediation approaches for the removal of contamination from the environment.

Dr. N.L. Devi is currently working as an Assistant Professor in the Department of Environmental Science at the Central University of South Bihar, Gaya. She has expertise in the field of environmental pollution and its remediation techniques in sustainable ways. She has published more than 50 peer review papers in International journals. She is also serving as an editor and reviewer in reputed journals and has edited several books.

References

- 1. Sarkar, U. K., & Borah, B. C. (2018). Flood plain wetland fisheries of India: with special reference to impact of climate change. Wetlands ecology and management, 26(1), 1-15.
- 2. Pankaj, P., & Hassan, M. A. (2014). Fish diversity of Hariya Chaur, a floodplain wetland in Vaishali district of North Bihar, India. Journal of Interacademicia, 18(2), 267-273.
- 3. Pankaj, P., Sudhir, K., Hassan, M. A., & Mishra, A. P. (2015). *Physico-chemical profile of Sakari Chaur, a floodplain wetland of Vaishali district in Bihar*. Environment and Ecology, 33(3), 1044-1047
- 4. Bhatta, L. D., Chaudhary, S., Pandit, A., Baral, H., Das, P. J., & Stork, N. E. (2016). *Ecosystem service changes and livelihood impacts in the Maguri-Motapung Wetlands of Assam, India.* Land, 5(2), 15.
- 5. Kumar, M. (2013). *Ecosystem (provisioning) services and resource utilization pattern of an ox-bow lake in Muzaffarpur urban Agglomeration, Bihar.* Development, 25, 27.
- 6. Ranjan, R. K., & Kumari, P. (2018). *Impact of land use and land cover changes on nutrients concentration in and around Kabar tal wetland, Begusarai (Bihar), India.* Geosptaial Applications for Natural Resource Management, 243-250.
- Shan, V., Singh, S. K., & Haritash, A. K. (2021). Present Status, Conservation, and Management of Wetlands in India. In Advances in Energy and Environment (pp. 235-256). Springer, Singapore.
- 8. Haritash, A. K., Shan, V., Singh, P., & Singh, S. K. (2015). *Preliminary investigation of environmental status of Bhindawas Bird Sanctuary*. Int J Eng Res Technol, 4(3), 53-56.

- **9.** Ramachandra, T. V., Alakananda, B., Rani, A., & Khan, M. A. (2011). *Ecological and Socio-Economic Assessment of Varthur Wetland, Bengaluru(India)*. Journal of environmental science & engineering, 53(1), 101-108.
- 10. Das, A., & Basu, T. (2020). Assessment of peri-urban wetland ecological degradation through importance-performance analysis (IPA): A study on Chatra Wetland, India. Ecological Indicators, 114, 106274.
- 11. Chatterjee, K., Bandyopadhyay, A., Ghosh, A., & Kar, S. (2015). Assessment of environmental factors causing wetland degradation, using Fuzzy Analytic Network Process: A case study on Keoladeo National Park, India. Ecological Modelling, 316, 1-13.
- 12. Singh, A. L., & Moirangleima, K. (2012). *Dying wetlands: a threat to livelihoods of Loktak lake dwellers*. Greener Journal of Physical Sciences, 2(4), 107-116.

Case Study

Avifauna of Mustafapur Wetland, Bihar

Md Shahbaz, Ahbar Alam, Shahla Yasmin

Introduction

Mustafapur wetland (25.59341°N and 85.040778°E) is located on the outskirts of Patna. It has an area of 140 m² and a perimeter of 1710 m (**Fig 3**). Rainwater is the only source of water in this area. Mustafapur, once known for Trapa cultivation, is now being converted into a residential area. Most of its area is fragmented into several small wetlands. These areas provide shelter and food to different bird species. No data pertaining to the avifauna of this region is available. Therefore, it was decided to prepare a checklist of birds of this wetland.

Fig 3. Map showing Mustafapur Wetland

Methods

The survey was conducted between November 2021 to February 2022 on a weekly basis from 7.30 am to 10.30 am. The average temperature was around 25-18°C, with the lowest dip in temperature recorded as 7°C. Bird species were recorded by using the point count method. Birds were recorded and identified by direct sightings as well as on the basis of calls.

Results

The tree species found in the Mustafapur wetland were *Ficus racemosa and Ficus religiosa*. Herbaceous vegetation: *Cymbopogon martinii*, *Brachiara mutica*, *Pennisetum purpureum*, *Imperata cylindrica*, *Hymenachne amplexicaulis*, *Setaria viridis*, *Arundo donax*, *Phragmites karka*, *Phragmites australis*, *Typha domingensis and Actinoscirpus grossus*. Aquatic flora includes *Pistia stratiotes*, *Eichhornia crassipes*, *Nymphaea micrantha*, *Vallisneria natans*, *Spirodela polyrhiza*, *Limnocharis flava*, *Hydrilla verticillata*, *Monochoria vaginalis*, *Azolla pinnata*, *Ottelia alismoides*, *Salvinia natans*, *Eclipta prostrata*, *Lemna minor*, *Alternanthera philoxeroides*, *Elodea najas*, *Polygonum plebeium*, *Enydra fluctuans and Marsilea minuta*.

A total number of 67 species of birds were recorded, out of which 10 were migratory (Table 2). The recorded species were classified into 15 orders and 29 families. The most dominant order was Passeriformes having 24 species, followed by Anseriformes, with 7 species, Pelicaniformes with 7 species, Charadriiformes with 6 species, Columbiformes with 4 species, Gruiformes with 4 species, Accipitriformes with 3 species, Coraciiformes with 3 species, Cuculiformes with 2 species, Psittaciformes with 2 species, Suliformes with 2 species, Apodiformes, Podicipediformes, Ciconiiformes and Piciformes each with only a single species. Lesser whistling duck (*Dendrocygna javanica*) was observed to be the most abundant, followed by Gadwall (*Mareca strepera*), Asian openbill stork (*Anastomus oscitans*) Jacanas and other rails. Western Marsh harrier (*Circus aeruginousus*) and Cinnamon bittern (*Ixobrychus cinnamomeus*) were the rare observations in this region. The above findings provide baseline data for future work. Unfortunately, the water bodies of Patna are being filled up fast for the construction of multistorey buildings. This will deprive the water birds of their safe home.

SNo	Common Name	Scientific name	IUCN status	Migratory status
1	Gadwall	Mareca strepera	LC	WM
2	Garganey	Spatula querquedula	LC	WM
3	Lesser whistling teal	Dendrocygna javanica	LC	R
4	Red-crested pochard	Netta rufina	LC	WM
5	Northern pintail	Anas acuta	LC	WM
6	Northern shoveler	Spatula clypeata	LC	WM
7	Eurasian wigeon	Mareca penelope	LC	WM

Table 2. Checklist of birds of Mustafapur Wetland, Patna.

8	Rufescent Prinia	Prinia rufescens	LC	R
9	Ashy Prinia	Prinia socialis	LC	R
10	Plain Prinia	Prinia inornate	LC	R
11	Common tailorbird	Orthotomus sutorius	LC	R
12	Zitting cisticola	Cisticola juncidis	LC	R
13	Citrine Wagtail	Motacilla citreola	LC	WM
14	White-browed Wagtail	Motacilla maderaspatensis	LC	R
15	White wagtail	Motacilla alba	LC	WM
16	Rosy Pipit	Anthus roseatus	LC	R
17	Brown rock chat	Oenanthe fusca	LC	R
18	Oriental magpie robin	Copsychus saularis	LC	R
19	Red-vented bulbul	Pycnonotus cafer	LC	R
20	Purple sunbird	Cinnyris asiaticus	LC	R
21	Black drongo	Dicrurus macrocercus	LC	R
22	Jungle babbler	Argya striata	LC	R
23	Barn swallow	Hirundo rustica	LC	R
23	Large-billed crow	Corvus macrorhynchos	LC	R
24 25	House crow	Corvus macrornynenos Corvus splendens	LC LC	R
23 26		Dendrocitta vagabunda	LC LC	R
20 27	Rufous treepie Common myna	Acridotheres tristis	LC LC	R
28	Indian pied myna		LC LC	R
28 29		Gracupica contra	LC LC	R
	Bank myna	Acridotheres ginginianus		
30	House sparrow	Passer domesticus	LC LC	R
31	Cattle egret	Bubulcus ibis	LC LC	R
32	Little egret	Egretta garzetta	LC LC	R
33	Great egret	Ardea alba	LC	R
34	Purple heron	Ardea purpurea	LC	R
35	Indian pond heron	Ardeola grayii	LC	R
36	Black-crowned night heron	Nycticorax nycticorax	LC	R
37	Cinnamon bittern	Ixobrychus cinnamomeus	LC	R
38	Black kite	Milvus migrans	LC	R
39	Western marsh harrier	Circus aeruginosus	LC	WM
40	Shikra	Accipiter badius	LC	R
41	Eurasian collared dove	Streptopelia decaocto	LC	R
42	Spotted dove	Spilopelia chinensis	LC	R
43	Laughing dove	Spilopelia senegalensis	LC	R
44	Feral pigeon	Columba livia domestica	LC	R
45	Red-wattled lapwing	Vanellus indicus	LC	R
46	Grey-headed lapwing	Vanellus cinereus	LC	R
47	Wood sandpiper	Tringa glareola	LC	R
48	Common Sandpiper	Actitis hypoleucos	LC	WM
49	Bronze-winged jacana	Metopidius indicus	LC	R
50	Pheasant-tailed jacana	Hydrophasianus chirurgus	LC	R
51	Grey-headed Swamphen	Porphyrio poliocephalus	LC	R
52	Common moorhen	Gallinula chloropus	LC	R
53	Eurasian coot	Fulica atra	LC	R

54	White-breasted waterhen	Amaurornis phoenicurus	LC	R		
55	Asian koel	Eudynamys scolopaceus	LC	R		
56	Greater coucal	Centropus sinensis	LC	R		
57	Plum-headed parakeet	Psittacula cyanocephala	LC	R		
58	Rose-ringed parakeet	Psittacula krameri	LC	R		
59	Indian cormorant	Phalacrocorax fuscicollis	LC	R		
60	little cormorant	Microcarbo niger	LC	R		
61	White-throated Kingfisher	Halcyon smyrnensis	LC	R		
62	Asian green bee-eater	Merops orientalis	LC	R		
63	Indian roller	Coracias benghalensis	LC	R		
64	Asian openbill stork	Anastomus oscitans	LC	R		
65	Little grebe	Tachybaptus ruficollis	LC	R		
66	Asian palm swift	Cypsiurus balasiensis	LC	R		
67	Coppersmith barbet	Psilopogon haemacephalus	LC	R		
	A gronying D -Desident WM-Winter Migrant SM-Summer Migrant I C-Least Concern					

Acronyms- R= Resident, WM= Winter Migrant, SM= Summer Migrant, LC= Least Concern.

Author Brief

Professor Shahla Yasmin is presently heading the Department of Zoology at Patna University. She has documented the birds found in Patna Women's College and in the fort area of Aligarh. She has also conducted a comparative study of doves and the ecology of peafowl in the Aligarh region.

Ahbar Alam has completed MSc in Environmental Science and Management from Patna University. He has also documented the birds found along the Ganges in Patna.

Mohammad Shahbaz has completed his MSc in Environmental Science and Management from Patna University. He has also documented the birds of Rajdhani Jalashay, Patna. Presently, he is documenting the biodiversity of the Patna Science College campus.

In Spotlight

Bihar government to make health cards for 133 wetlands

15 Jun 2022: In its first attempt to map the wetlands of Bihar, the state department of the environment, forest and climate change (DEFCC) has identified 133 water bodies to document and develop an **'ecosystem health report card'** to provide them legal protection under the Wetland Protection Rules. The Bihar State Wetland Authority (BSWA) has started the survey work on the wetlands

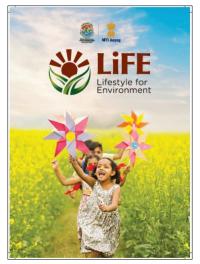
spread over more than 100 hectares with a focus on three areas – the delineation of the wetland, hydrology and catchments, and biodiversity and governance. The spatial mapping of such wetlands has been done with the help of the Indian Space Research Organization (ISRO). The wetlands will be examined in different phases by forest officials, environmentalists, and wetland and water experts.

Read more: http://bswa.bihar.gov.in/Download.aspx

75 Ramsar Sites in 75th Year of Independence

13 Aug 2022: To commemorate the 75th year of Independence, India has added 11 more wetlands to the list of Ramsar sites, taking the final tally to 75. The total area protected under the Ramsar convention has gone up to 13,26,677 ha. The 11 new sites include Four (4) sites in Tamil Nadu, Three (3) in Odisha, Two (2) in Jammu & Kashmir and One (1) each in Madhya Pradesh and Maharashtra. Designation of these sites as Ramsar sites would help in the conservation and management of wetlands and the wise use of their resources. During this year itself

(2022), a total of 28 wetlands have been declared as Ramsar sites. Based on the date of


designation mentioned on the Ramsar Certificate, the number is 19 for this year (2022) and 14 for the previous year (2021). Tamil Nadu has the maximum number of Ramsar sites (14 nos), followed by UP which has a total of 10 Ramsar sites. Detailed list is shown in **Table 3**. **Read more:** <u>https://pib.gov.in/PressReleasePage.aspx?PRID=1851484</u>

Mission LiFE- Lifestyle for Environment Launched By Hon'ble Prime Minister

20 Oct 2022: Prime Minister Shri Narendra Modi launched Mission LiFE (Lifestyle for Environment) on October 20, 2022. Mission LiFE is an India-led global mass movement to nudge individual and community action to transition towards "mindful and deliberate utilization, instead of mindless and destructive consumption." Mission LiFE seeks to translate the vision of LiFE into measurable impact.

Mission Objectives:

- Mission LiFE seeks to translate the vision of LiFE into measurable impact.
- Mission LiFE is designed with the objective to mobilise at least one billion Indians and other global citizens to take individual and collective action for protecting and preserving the environment in the period 2022 to 2027.
- Within India, at least 80% of all villages and urban local bodies are aimed to become environment-friendly by 2028.
- It aims to nudge individuals and communities to practise a lifestyle that is synchronous with nature and does not harm it. Those who practice such a lifestyle are recognised as 'Pro Planet People'.

To access the document, click on the link: https://www.niti.gov.in/sites/default/files/2022-10/Brochure-10-pages-op-2-print-file-20102022.pdf.

Read more: https://pib.gov.in/PressReleasePage.aspx?PRID=1869466

Ban on Single Use Plastics

12 December 2022: The Plastic Waste Management Rules, 2016, provides the statutory framework and the prescribed authorities for enforcement of the rules, including ban on identified single use plastic items. The following identified single use plastic items, which have low utility and high littering potential, have been prohibited, with effect from **1st July, 2022**, vide Plastic Waste Management Amendment Rules, 2021:

- Ear buds with plastic sticks, plastic sticks for balloons, plastic flags, candy sticks, ice- cream sticks, polystyrene [Thermocol] for decoration;
- Plates, cups, glasses, cutlery such as forks, spoons, knives, straw, trays, wrapping or packing films around sweet boxes, invitation cards, and cigarette packets, plastic or PVC banners less than 100 micron, stirrers.

The notification also prohibits manufacture, import, stocking, distribution, sale and use of plastic carry bags having thickness less than seventy-five microns with effect from 30th September 2021, and having thickness less than **thickness of one hundred and twenty microns with effect from the 31st December, 2022.**

States and UTs have also been asked to undertake random checking at border checkpoints to stop inter-state movement of banned single use plastic items. Special pan India enforcement drives have been undertaken in months of October and November, by Central Pollution Control Board, State Pollution Control Boards and Pollution Control Committees.

Read More:

https://pib.gov.in/PressReleasePage.aspx?PRID=1882855#:~:text=The%20Plastic%20Waste% 20Management%20Rules,identified%20single%20use%20plastic%20items

Mission Amrit Sarovar

20 Dec 2022: Mission Amrit Sarovar had initially planned a target to construct or rejuvenate 50,000 Amrit Sarovar ponds across India till 15th August 2023. Now, additional 50,000 Amrit Sarovar ponds will be constructed by 15th August 2023. The State Governments have identified sites for constructing Amrit Sarovar in the country. As of 14.12.2022, the construction work has been started on 53,050

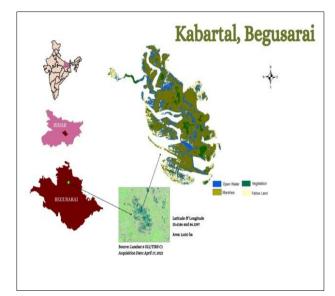
sites. The sites on which construction will start soon are 38,503. The Government has created a portal to capture all the activities taking place under the mission. The details of the identified sites, works commenced, and works completed may be seen through the following link: https://amritsarovar.gov.in/login. Every Amrit Sarovar will have a pondage area of 1 acre with a water holding capacity of about 10,000 cubic meters. This mission will go a long way in improving water resource availability in the country and is likely to become one of the key deterrents against the threats of climate change.

Read More: https://pib.gov.in/PressReleaseIframePage.aspx?PRID=1885211

Table 3. State-wise list of Wetlands identified as Ramsar Sites in India (75)

S.No	States	District	No. of Ramsar Sites	Name of Ramsar Site
1	Andhra Pradesh	Eluru	1	Kolleru Lake
2	Assam	Kamrup	1	Deepor Beel
3	Bihar	Begusarai	1	Kabartal Wetland
4	Goa	South Goa	1	Nanda Lake
		Jamnagar		Khijadia Wildlife Sanctuary
		Ahmedabad		Nalsarovar Bird Sanctuary
5	Gujarat	Ahmedabad	4	Thol Lake Wildlife Sanctuary
		Vadodara		Wadhvana Wetland
		Jhajjar	2	Bhindawas Wildlife Sanctuary
6	Haryana	Gurugram		Sultanpur National Park
		Lahul and Spiti		Chandertal Wetland
7	Himachal Pradesh	Kangra	3	Pong Dam Lake
		Sirmaur		Renuka Wetland
		Bandipora		Wular Lake
		Srinagar		Hokera Wetland
		Jammu		Surinsar-Mansar Lakes
8	Jammu & Kashmir	Baramulla	5	Hygam Wetland Conservation Reserve
		Srinagar		Shallbugh Wetland Conservation Reserve
9	Karnataka	Mandya	1	Ranganathituu Bird Sanctuary
		Kollam		Asthamudi Wetland
10	Kerala	Kollam	3	Sasthamkotta Lake
10	ixerata	Alappuzha, Kottayam,	5	Vembanad-Kol Wetland

		Ernakulam and Thrissur		
11	Ladakh	Leh	2	Tso Kar Wetland Complex
11		Len	2	Tsomoriri Lake
		Bhopal		Bhoj Wetlands
		Shivpuri		Sakhya Sagar
12	Madhya Pradesh	Indore	4	Sirpur wetland
		Indore		Yashwant Sagar
		Buldhana		Lonar Lake
13	Maharashtra	Nashik	3	NandurMadhameshwar
		Mumbai	-	Thane Creek
14	Manipur	Bishnupur	1	Loktak Lake
15	Mizoram	Saiha	1	Pala wetland
		Kendrapara		Bhitarkanika Mangroves
	Ganjam Nayagarh	Ganjam		Chilka Lake
			Satkosia Gorge	
16	Orissa	Ganjam	6	Tampara Lake
		Sambalpur		Hirakud Reservoir
		Cuttack		Ansupa Lake
				Beas Conservation Reserve
		Ferozepur		Harike Lake
		Kapurthala		Kanjli Lake
17		Gurdaspur	6	Keshopur-Miani Community Reserve
17	Punjab	Rupnagar		Nangal Wildlife Sanctuary
		Rupnagar and Nawanshahr		Ropar Lake
		Bharatpur		Keoladeo Ghana NP
18	Rajasthan	Jaipur	2	Sambhar Lake


		Nagapattinam		Point Calimere Wildlife and Bird Sanctuary
		Kanchipuram		Karikili Bird Sanctuary
		Chennai and Chengalpattu		Pallikaranai Marsh Reserve Forest
		Cuddalore		Pichavaram Mangrove
		Tirunelveli		Koonthankulam Bird Sanctuary
		Toothukudi & Ramanathapura m		Gulf of Mannar Marine Biosphere Reserve
		Kanyakumari		Vembannur Wetland Complex
		Erode		Vellode Bird Sanctuary
19	Tamil Nadu	Kancheepuram	14	Vedanthangal Bird Sanctuary
		Thiruvarur		Udhayamarthandapuram Bird Sanctuary
		Ramanathapura m		Chitrangudi Bird Sanctuary
		Kanyakumari		SuchindramTheroor Wetland Complex
		Tiruvarur		Vaduvur Bird Sanctuary
		Ramanathapura m		Kanjirankulam Bird Sanctuary
20	Tripura	Sipahijala	1	Rudrasagar Lake
		Sant Kabir Nagar		Bakhira Wildlife Sanctuary
		Raebareli		Haiderpur Wetland
		Unnao		Nawabganj Bird Sanctuary
		Gonda		Parvati Agra
21	Uttar Pradesh	Mainpuri	10	Bird Sanctuary Saman Bird
		Raebareli		Sanctuary Samaspur Bird
		Tucouron		Sanctuary

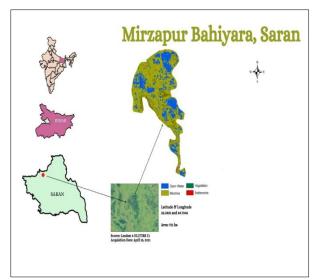
		Hardoi Etawah Agra		Sandi Bird Sanctuary Sarsai Nawar Jheel Sur Sarovar
		Fatehgarh		Upper Ganga River (Brijghat to Narora Stretch)
22	Uttarakhand	Dehradun	1	Asan Conservation Reserve
		24 Parganas North & South		East Kolkata Wetlands
23	West Bengal	24 Parganas South	2	Sunderbans Wetland

Source: https://static.pib.gov.in/WriteReadData/specificdocs/documents/2022/aug/doc202282696401.pdf

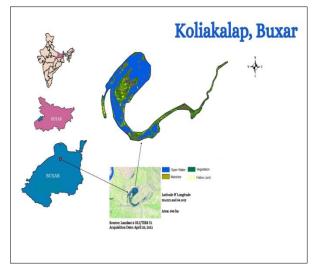
Knowledge Outcomes


Important Wetlands of Bihar

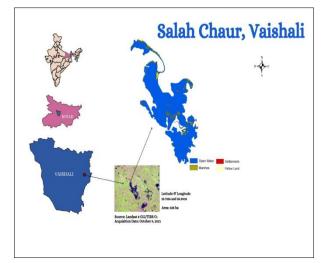
Map 1: Kabartal Lake (Ramsar Site), Bihar


Wetland Type: Asia's largest ox-bow lake, Location & Area: Begusarai (25.61860278 and 86.13974722) & 2,620 ha, River Basin: Gangetic flood plain and Burhi Gandak, Fringe Villages: Sakra, Kanusi, Basahi, Yakubpur, Manjhaul, meghaul, Ekamba. Parora, Naravanipipar, Village Population & Area: 1,25,841 (Census 2011) & 7,737 ha, Common **Species:** 221 Birds Species (Including, Migratory Ducks, Coots, Dabchick, Herons. Whistling Ducks, Little Grebe, Greylag Goose, Golden Plover, Common

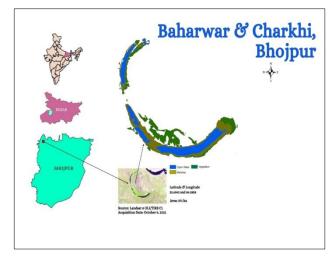
Snipe etc.), 50 Fish Species (including, Labeo, Cirrhinus Mrigala, *C. Reba*, *C. Punctatus*, Notopterus, and *Anabas Testudineus* etc.), 165 Plants, 55 Macrophytes and 394 Species of fauna.


Map 2: Lake Baraila, Bihar

Wetland Type: Natural Lake (also known as Salim Ali Jubba Sahni Bird Sanctuary), Location & Area: Vaishali (25.76344674 and 85.55397493) & 1,204 ha, River Basin: Burhi Gandak, Fringe Villages: Amthanwa, Dulwar, Loma, Mahthi Dharamchand, Village Population & Area: 18,996 (Census 2011) & 1,432 ha, Common Species: Birds Species (The Indian Shag, Red Collard Dove, Asian Koel, Small Bee Catcher, Brahmany Starlet, and Tree Pie), 104 Herbaceous, 15 Climbers, 11 Trees and 04 Shrubs.


Map 3: Mirzapur Bahiyara Wetland, Bihar

Wetland Type: Natural Waterlogged, Location Saran (26.08315556 & Area: and 84.70468889) & 721 ha. River Basin: Gandak. Fringe Villages: Dhaurigopal, Barahimpur Chakarpan, Madarpur, Sankauli, Korranw, Barahimpur Gopi, Bahiara, Katsa, Najiba, Bindra Patak, Rampur Khas, Rampur Digar, Sonhani. Manan Patti, Mirzapur Bahiyara, Villages Population & Area: 25.902 (Census 2011) & 2.322 ha.


Map 4: Koliakalap Wetland, Bihar

Wetland Type: Ox-Bow Lake, Location & Area: Buxar (25.612112 and 84.141266) & 696 ha, River Basin: Gangetic flood plain, Fringe Villages: Bhojpur Kadim, Bhojpur Jadid, Rampur Mathiya, Chandpali, Koliya, Shikarpur, Basgitiya, Marwatiya, Villages Population & Area: 38,987 (Census2011) & 2,007 ha.

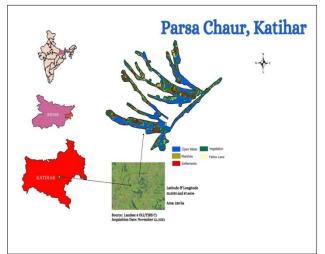
Map 5: Salah Chaur Wetland, Bihar

Wetland Type: Natural Lake, Location & Area: Vaishali (25.735661 and 85.390876) & 638 ha, River Basin: Burhi Gandak, Fringe Villages: Tajpur Raj Urf Bahora, Zahid Chak, Bahsi Saidpur, Common Species: Fauna Species (Stork, Cormorant), Villages Population & Area: 6,485 (Census 2011) & 756 ha.

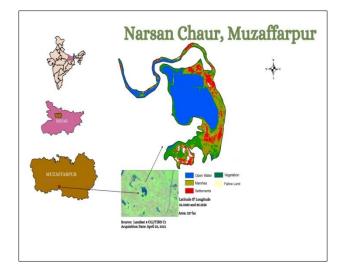
Map 6: Baharwar and Charkhi Wetland, Bihar

Wetland Type: Natural Ox Bow Lake/Cut Off Meander, Location & Area: Bhojpur (25.694273 and 84.385802) & 371 ha, River Basin: Gangetic flood plain, Fringe Villages: Suhiya, Ramchandar Semaria, Lilari, Sahjauli, Bahoranpur Dakhinwar, Parsonda, Isharpura, Nathpae, Chamarpur, Sonbarsa, Villages Population & Area: 33,898 (Census 2011) & 3,611 ha

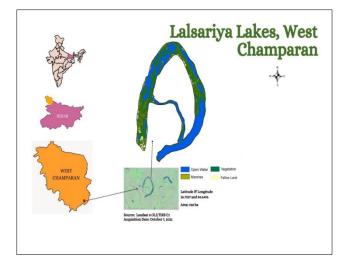
Map 7: Tirla N Wetland, Bihar


Wetland Type: Natural Ox Bow Lake, Location & Area: Katihar (25.5169 and 87.7064) & 308 ha, River Basin: Gangetic flood plain, Fringe Villages: Dharhan, Rahar, Panki, Pakaria, Harsua, Jaunia, Villages Population & Area: 11,439 (Census 2011) & 1,527 ha.

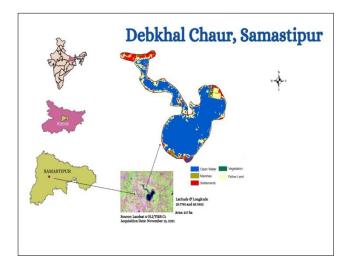
Map 8: Sariya Man Siswa Wetland, Bihar


Wetland Type: Natural Ox Bow Lake, Location & Area: West Champaran (26.789200 and 84.435990) & 295 ha,

River Basin: Burhi Gandak, Fringe Villages: Balua Rampur, Majhariya , Tola Tumkaraia, Siswa Sarea, Tola Malahi, **Villages Population & Area:** 23,966 (Census 2011) & 2,548 ha.

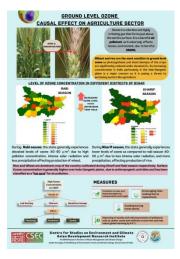

Map 9: Parsa Chaur Wetland, Bihar

Wetland Type: Natural Lake, Location & Area: Katihar (25.5392 and 87.6606) & 228 ha, River Basin: Gangetic flood plain, Fringe Villages: Mohnipipra, Tikaili, Paharpur, Jabra, Harphara, Budhaili, Villages Population & Area: 7,567 (Census 2011) & 1,200 ha.


Map 10: Narsan Chaur Wetland, Bihar

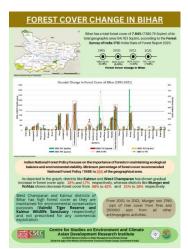
Wetland Type: Natural Lake, Location & Area: Muzaffarpur (26.038343 and 85.253565) & 227 ha, River Basin: Burhi Gandak, Fringe villages: Phanda urf Bishunpur Phanda, Bahilwara bhual, Village Population & Area: 10,989 (Census 2011) & 1,111 ha.

Map 11: Lalsariya Wetland, Bihar


Wetland Type: Natural Ox Bow Lake/Cut Off Meander, Location & Area: West Champaran (26.73271389 and 84.64967222) & 218 ha, River Basin: Burhi Gandak, Fringe Villages: Rajabhar, Lal Saraia, Karamwa, Majharia Shekh, Villages Population & Area: 27,939 (Census 2011) & 2,677 ha.

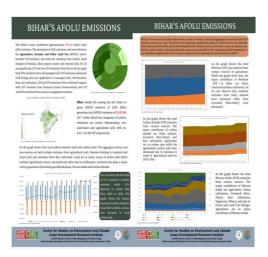
Map 12: Debkhal Wetland, Bihar

Wetland Type: Natural Lake, Location & Samastipur (25.779306 Area: and 85.780258) & 217ha, River Basin: Burhi Gandak. Fringe Villages: Lakhmipur Maheshpatti Deal, Saidpur Zahid, Raepur, Bhagwanpur Kamla, Dariapur Pataili, Rampur Keshopatti, Rupauli Buzrug, Villages **Population** & Area: 46,083 (Census 2011) & 2,411 ha.


Infographics

Ground Level Ozone Causal Effect on Agriculture Sector

This infograp highlights the causal effect of the concentration of ground-level ozone on agricultural productivity in different districts of Bihar. It is a synthesis of data hosted by the Bihar State Pollution Control Board.


Available at: https://www.adriindia.org/publications/brochures/39

Forest Cover Change in Bihar

This infographic presents the decadal changes in forest cover of Bihar from 1991-2021. The date used is borrowed from the Forest Survey of India reports. Several dynamic changes are evident and can be seen in the infograph.

Available at: https://www.adriindia.org/publications/brochures/41

Bihar's Agriculture, Forestry and Other Land Use (AFOLU) Emissions

To meet the commitments under the Paris Climate Pact, the development and reporting of sectoral emission inventory is a key priority. This infographic is an attempt on similar lines and reflects on the AFOLU emissions for the state of Bihar.

Available at: https://www.adriindia.org/publications/brochures/40

Calendar

Available at: https://www.adriindia.org/publications/brochures/43

1. Special Lectures/ Webinars/Workshop

I. Roundtable Discussion on Economic Growth Prospects of Bihar

Patna, Jul 01 2022: Understanding various aspects of the growth and development process is critical. The roundtable discussion intended to brainstorm on potential growth and development pathways for the state of Bihar. It aimed to understand and inform potential scenarios

related to Growth in GDP, change in the share of agriculture, manufacturing, and services sector in the economy, urbanization patterns and pathways for the same, Urban-rural income divide and participation of labour force.

Knowledge Dissemination

(Web source: https://www.adriindia.org/events/roundtable-discussion-on-economic-growth-prospects-of-bihar)

II: Green Dialogue: Greening Priority Sectors for Sustainable Economic Recovery in Bihar

Patna, July 27 2022. The EIACP-RP CSEC at ADRI Patna, in collaboration with Development Alternative (DA), New Delhi, organized a 'Green Dialogue' in Bihar. It is part of a series of dialogues on 'Greening the Priority Sectors for Sustainable Economic Recovery in Bihar.' The discussion intended to brainstorm on prospects of green

growth in the priority sectors, like industries and agriculture, through technological and financial innovations, under the policy landscape of Bihar.

(Web source: https://www.adriindia.org/events/green-dialogue-greening-priority-sectors-for-sustainable-economic-recovery-in-bihar)

III. Technical Consultation on 'Zero-Hunger, Zero-Carbon Food Systems (ZHZC') in Bihar

Patna, August 11 2022. A consultation workshop on "Zero-Hunger and Zero-Carbon Food system in Bihar" was co-hosted by the Tata Cornell Institute for Agriculture and Food nutrition (TCI) at Cornell University and the EIACP-RP CSEC at ADRI in Patna. The workshop aimed to discuss and develop a Green House Gas (GHG) emissions reduction strategy in the agriculture sector, which envisions addressing SDG goal-2, i.e., Zero

<section-header><section-header><complex-block><complex-block><complex-block>

Hunger and Food Security. (Web source: https://www.adriindia.org/events/technical-consultation-on--zero-hunger-zero-carbon-food-systems-zhzc--in-bihar)

IV. Roundtable Discussion on State Initiatives for Transformation Towards Green Economic Growth

Patna, November 22 2022. EIACP-RP CSEC at ADRI, in collaboration with the Centre for Budget and Governance Accountability (CBGA), Delhi, hosted a roundtable discussion on "Bihar's Policy and Budgetary Priorities for Transitioning towards Green Economic Recovery." The discussions emphasized the need to devise an economic recovery pathway for Bihar which is in sync with sustainable development goals as declared by the UN. It can ensure a strong economy capable of withstanding sudden shocks (pandemic or climatic-related) and bring several social benefits. The

discussion aimed to disseminate the critical study findings of CBGA through policy priority analysis in financing climate change mitigation actions (clean energy financing in Bihar).

(Web source: *https://www.adriindia.org/events/roundtable-discussion-on-state-initiatives-for-transformation-towards-green-economic-growth*)

2. Awareness Programmes

I. Hariyali Mahotsav

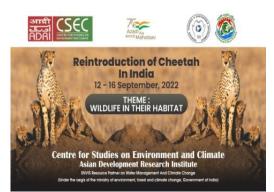
July 06, 2022. EIACP-RP CSEC at ADRI organized a Plantation drive at ADRI at one of the community parks in Patna. The idea behind the program was to spread awareness of the importance of green cover and to encourage the practice of plantations. The event was organized during the Hariyali Mahotsav week as per the guidelines of MoEF&CC.

II. Quiz Competition on the occasion of World Nature Conservation Day

August 5 2022. The EIACP-RP CSEC at ADRI organized a quiz competition at Devipada Choudhary Shaheed Smarak Miller High School on World Nature Conservation Day. Additionally, commemorating 75 years of Indian Independence ('Azadi ka Amrit Mahotsav') the EIACP centre engaged with the youths and school

students to build awareness of their surrounding natural resources and biodiversity.

Students and faculties participated in the program, which was conducted as an interactive quiz competition. Mr. Vinay Kumar Singh, Principal Miller High School, chaired the event and encouraged the students to understand the significance of conserving natural resources and biodiversity.


III. Online/offline competition on the Reintroduction of Cheetah

September 8–16, 2022. To educate the students about the "Reintroduction of Cheetah in India," an online/offline Competition was organized by EIACP-RP CSEC at ADRI at different schools in Bihar. Almost 200 to 300 students participated in this competition. The competitions included poems, essays, slogans, posters and story-writing submissions.

IV. Special Lecture on "Reintroduction of Cheetah"

16th September 2022: To create awareness about the "Reintroduction of Cheetah in India," a physical awareness drive was organized by EIACP-RP CSEC at ADRI in different schools and institutions, namely Rajkiya Madhya Vidyalaya, Rajapur Patna, Kilkari Bihar Bal Bhawan Patna, and Royal Public School Baluaha, Begusarai. More than 500 students participated in these Lectures cum awareness campaigns.

V. Poster Exhibition and Special Lecture on World Ozone Day

16th September 2022: A Special Lecture and Poster Exhibition was organized at Kilkari Bihar Bal Bhawan, Patna, to create awareness on "WORLD OZONE DAY."


The lecture intended to educate the students about the science behind ozone, including its chemical structure, importance, the ozone cycle, its depletion, and the formation of the ozone hole. The policy interventions (e.g., Montreal Protocol) aimed at

curbing ozone layer depletion were also discussed. Almost 100 students and a few teachers, and non-teaching staff attended the session.

VI. A river walk cum awareness drive on the occasion of World River Day

25th September 2022: An awareness program on the occasion of "World River Day 2022" was organized by the CSEC-ADRI EIACP Center in Patna. This program aimed to raise public awareness about the nuances of anthropogenic influences on riverine ecology and encourage their preservation through a collective change in the 'Life Style for Sustainable Environment.' The program included a walk along the edges of the Ganga River cum a cleanup drive along the banks, followed by special lectures on the biodiversity and ecology of Ganga. The Lectures were delivered by Dr. Gopal Sharma, Joint Director Zoological Survey of India, and Navin Kumar from the Indian Bird Conservation Network. Dr. Prabhat P Ghosh, Mr. Vivek Tejaswi, Dr. Ajeet Singh, Ms. Pooja Kumari, Ms. Sarada Modal, Mr.

Sanjeev Kumar, and a few faculty members from ADRI were present. Volunteers from Kilkari, Bihar Bal Bhawan, Bhumi, NIT, Patna University, and others participated in the cleanup drive.

Important Readings

Wetland Ecology: Principles and Conservation by Paul A. Keddy

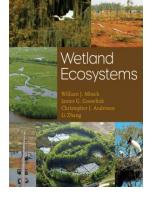
Wetland Ecology by Paul A. Keddy is a concise guide to the science behind wetlands. It extends an overview of the current scientific literature on wetlands targeted towards senior-level students and professionals.

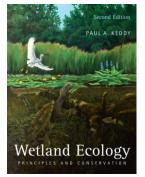
Available at:

https://books.google.co.in/books?hl=en&lr=&id=eVeaSqFy2VgC&oi=fnd&pg=PR5&dq=wetland&ots=MgW7ieeNGf&sig=SsOf5sstIK4WK9-Zi5 Ri1M30Nc&redir esc=v#v=onepage&g=wetland&f=false

Wetland Ecosystems by William J. Mitsch, James G. Gosselink, Li Zhang, Christopher J. Anderson

This book comprehensively covers wetland science, management options, and restoration practices. Following an introduction to ecosystems in general and wetland ecosystems in particular, Wetland Ecosystems examine the major types of wetlands found worldwide: coastal wetlands, freshwater marshes and forested swamps, and peatlands. The final chapter reviews three fundamental system approaches to studying wetlands: mesocosms, full-scale experimental ecosystems, and mathematical modelling.


Available at:


https://books.google.co.in/books?hl=en&lr=&id=s0qAkixjuggC&oi=fnd&pg=PR5&dq=wetland&ots=ZeEnZqIJiK&sig=HkACWAtmQUaGYbL6l4JWv5eeCQs&redir_esc=y#v=onepage&q=wetland&f=false

Aquatic and Wetland Plants of India by Christopher D. K. Cook

The book is a comprehensive compilation of chapters extending information on aquatic and wetland plants. The authors have summarised extensive data on wetland-based plants' distribution, biology and ecology and have created a valuable synthesis. The book is necessary not only for anyone interested in the flora of peninsula India but also a valuable source of information for researchers and students of tropical floras or taxonomy and the distribution of wetlands and water species worldwide.

Available at: https://global.oup.com/academic/product/aquatic-and-wetland-plants-of-india-9780198548218?lang=en&cc=gb

<u>Appendix I</u> MEDIA COVERAGE

प्रभात खबर

पटना, बुधवार, 23.11.2022

जलवायु संकट पर मिलकर करना होगा काम

पटना. आद्री के सदस्य सचिव डॉ प्रभात पी घोष ने कहा कि जलवाय परिवर्तन के संकट को कम करने के लिए सरकार और समाज को मिलकर काम करना होगा.मंगलवार को आद्री स्थित सेंटर फॉर स्टडीज ऑन इन्वायर्नमेंट एंड क्लाइमेट चेंज और सेंटर फॉर बजट एंड गवर्नेंस एकाउंटेबिलिटी दिल्ली द्वारा आयोजित'बिहार पॉलिसी एंड बजटरी प्रॉयोरिंटी फॉर बिहार ट्रांजिषमिंग टूवाड्स ग्रीन इकोनॉमिक रिकवरी' विषय पर आयोजित परिचर्चा में उन्होंने यह बातें कहीं. बैठक में डॉ सुधांशु ने कहा,बजट में जलवायु परिवर्तन और पर्यावरण जैसे गंभीर विषयों पर भी ध्यान देने की जरूरत है. हालांकि बिहार में जलवायु परिवर्तन और पर्यावरण पर खर्च होने वाली राशि को लेकर ग्रीन बजट का प्रावधान किया गया है. लेकिन इसे प्राथमिकता में लाने की जरूरत है. सीबीजीए की डॉ. ज्योत्सना गोयल ने अक्षय ऊर्जा क्षेत्र और स्वच्छ प्रौद्योगिकी उद्योगों में हरित नौकरियों के सजन के लिए राज्य स्तर पर एक ढांचे के विकास की आवश्यकता पर जोर दिया.

अपर मुख्य सचिव अरुणिश चावल ने कहा कि अधिकारी वित्तीय अनुशासन को बनाए रखने का प्रयत्न करते हैं। राज्य के वित्त विभाग के पूर्व प्रधान सचिव रामेश्वर सिंह ने कहा कि आज पीपीपी मोड में काम करने का जमाना आ गया है।

पटना | महालेखाकार (लेखा परीक्षा) रामावतार शर्मा ने कहा कि देश के वित्तीय नियंत्रण में जवाबदेही, पारदर्शिता और सुशासन को बढावा देने में भारत के नियंत्रक एवं महालेखापरीक्षक (सीएजी) की विशेष भूमिका है। वे लेखापरीक्षा जागरुकता सप्ताह के अवसर पर आयोजित "भारत के नियंत्रक एवं महालेखापरीक्षक के प्रति जनता की धारणा और इससे अपेक्षाएं" विषय पर आयोजित सेमिनार को संबोधित कर रहे थे। कार्यक्रम में योजना एवं विकास विभाग के

THE TIMES OF INDIA, PATNA WEDNESDAY, NOVEMBER 23, 2022

Experts for implementation

of green budgeting in state

ADRI PROGRAMME

vernance towards the agen-da of green growth and the need for integrated plan-ning for effective implemen-

tation. Sudhanshu Kumar of CEPPF-ADRI gave inputs about how to imbibe effecti-

ve public finance deliver me-chanism, such as ensuring adequacy for public finan-ces, implementation effici-

अर्थव्यवस्था को चुनौतियों से लड़ने लायक बनाने की जरूरत

हैतिक भारव

आद्री में गोलमेज परिचर्चा आयोजित, हरित विकास के एजेंडे पर और काम किया जाए

का सामना करने के लिए पर्याप्त मजबूत

चर्चा की अध्यक्षता करते हुए डॉ.

बनाने पर भी प्रकाश डाला गया।

भास्कर न्यूज पटना

आद्री स्थित सेन्टर फॉर स्टडीज ऑन इन्वायर्नमेंट एंड क्लाइमेट चेंज (सीएसईसी-आद्री) ने सेंटर फॉर बजट एंड गवर्नेंस अकाउंटेबिलिटी (सीबीजीए), दिल्ली के सहयोग से 'बिहार्स पालिसी एंड बजटरी प्रॉयोरिटी फॉर बिहार ट्रांजिषनिंग टूवर्डस ग्रीन इकोनॉमिक रिकवरी' पर विषय पर आज एक गोलमेज परिचर्चा की मेजबानी की। परिचर्चा में बिहार के मतत आर्थिक विकास की प्राथमिकताओं

पर से जुड़े विभिन्न पहलुओं पर जोर दिया गया। साथ ही अर्थव्यवस्था को किसी भी अचानक चुनौती (महामारी या जलवायु)

की दिशा में शासन के सभी स्तरों द्वारा सामूहिक कार्रवाई और प्रभावी कार्यान्वयन के लिए एकीकृत योजना की आवश्यकता जोर दिया। सीइपीपीएफ-आद्री के डॉ. सुधांशु कुमार ने प्रभावी सार्वजनिक वित्त तंत्र को कैसे आत्मसात किया जाए, जैसे कि सार्वजनिक वित्त के लिए पर्याप्तता सुनिश्चित करना, कार्यान्वयन दक्षता और साथ ही राज्य के लिए सतत विकास लक्ष्यों का पालन करना के बारे में

जानकारी दी।

mate (CSEC) at the Asian Development Research In-stiture (ADRI-Patna), in col-प्रभात पी घोष ने हरित विकास के एजेंडे laboration with the Centre for Budget and Governance Accountability (CBGA), Delhi, hosted a round-table discussion on 'Bihar's policy and budgetary priorities for transitioning towards green economic recovery' here on Tuesday.

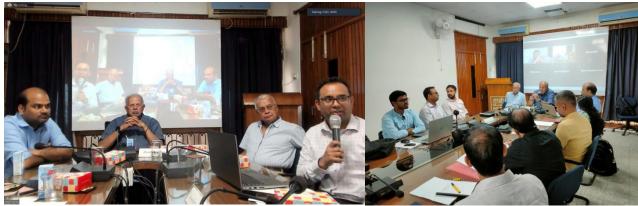
The round-table empha-sized on the need to drive an economic recovery pathway for Bihar which is in sync for Binar Which is in sync with sustainable develop-ment priorities and make economy strong enough to withstand any sudden shocks (pandemic or clima-tic). The discussion was al-

TIMES NEWS NETWORK

Patna: The Centre for Studi-

s on Environment and Cli-

med at disseminating the study findings from CBGA which analysed the finan-cing of climate change miti-gation actions, which is cle-on groups findentiate in the state ency and at the same instan ce adhering to sustainable development goals for the state. Jyotsna Goel from CBGA emphasized the need for development of a fram-ework at state level for creaan energy financing in Bihar. Presiding over the dis-cussion, Prabhat P Ghosh


tion of green jobs from the renewable energy sector and in clean technology in-dustries. emphasised on collective ac tions by all the tiers of godustries. Vivek Tejaswi of CSEC-

Vivek Tejaswi of CSEC-ADRI highlighted the role of budgeting tool for greening the public finance manage-ment system in Bihar and aligning it with green growth objectives. Representatives from SIDBI, Bihar Skill Develop-ment Miscion State

ment Mission, State Pollution Control Board, RTI, WRI, CEEW, SSEF and various other organisations present in the discussion

Appendix II

PHOTO GALLERY

Glimpses of Roundtable Discussion on Economic Growth Prospects of Bihar

Glimpses of Green Dialogue on Greening Priority Sectors for Sustainable Economic Recovery in Bihar

Hariyali Mahotsav 2022

Glimpses of World Nature Conservation Day at Miller High School

Technical Consultation on 'Zero-Hunger, Zero-Carbon Food Systems (ZHZC') in Bihar

Awareness Campaign on "Reindroduction of Cheetah"

Glimpses of World Ozone Day 2022

Glimpses of World River Day 2022

Roundtable Discussion on State Initiatives for Transformation Towards Green Economic Growth

Newsletter Subscription Form

Please fill in the form and send us back by post or email

Adrian- An EIACP Newsletter on Wetland Ecosystem by Centre for Studies on Environment and Climate (CSEC), ADRI, BSID Colony, Off Boring Patliputra Road, Patna 800013 Tel: +91-612-2575649, E-mail: editorial.ceecc@adriindia.org

Subscribers Details

Name:		
Organisation/Institute:		
Address:		
Tel/Mobile:	. Fax:	Email:

Published By,

Environmental Information, Awareness, Capacity Building, and Livelihood Programme Centre (EIACP-PC-RP), Centre for Studies on Environment at Climate (CSEC) at the Asian Development Research Institute (ADRI) BSID Colony, Off Boring Patliputra Road, Patna 800 013 **Phone:** +91-612-2575649(O) **Fax:** +91-612-2577102 **Web:** www.adriindia.org, **Email:** csec@adriindia.org